
Lecture: Secure 2-party Computation

Hemanta K. Maji

Contents

1 Overview 1

2 Interesting Functionalities 1

3 Interesting Protocols 1

3.1 Overall Summary . 3

4 Secure 2-party Computation of Small Functions 3

5 Yao’s Garbled Circuit Construction [Yao82] 3

6 GMW Construction [GMW87] 4

7 Security Proofs 5

1 Overview

Alice and Bob are interested in performing general two-party secure computation where their private
inputs are, respectively, x and y. We are in the information-theoretic setting and parties are
interested in computing a deterministic symmetric function f(x, y). Previously, we had seen that
only decomposable functions can be securely computed in the plain model, i.e. parties have access to
secure point-to-point communication channels only. In this section, we shall use oblivious transfer
to perform any computation securely against information-theoretic semi-honest adversaries.

2 Interesting Functionalities

First we define some interesting functionalities.

2-choose-1 Bit Oblivious Transfer. This is a two-party functionality, where Alice has inputs
(x0, x1) ∈ {0, 1}2 and Bob has input c ∈ {0, 1}. The functionality provides xc to Bob. Alice is
referred to as the sender and Bob is referred to as the receiver. Alice’s private input is referred to as
input bits and Bob’s private input is referred to as the choice bit. This functionality is also referred
to as the oblivious transfer functionality or OT functionality.

n-choose-k `-bit String Oblivious Transfer. This is a two-party functionality, where Alice has
inputs (x0, . . . , xn−1) ∈

(
{0, 1}`

)n
and Bob has input i ∈ {0, . . . , n−1}. The functionality provides

xi ∈ {0, 1}` to Bob.

Random Oblivious Transfer Correlation. This is an input-less randomized functionality, i.e.
parties do not have any inputs. Alice receives (x0, x1)

$← {0, 1}2 and Bob receives (c, xc), where
c

$←{0, 1}.

3 Interesting Protocols

2-choose-1 Bit OT from Random OT Correlation. Suppose the private inputs of Alice is
(x0, x1) and the private input of Bob is c.

Protocol. Alice and Bob invoke the Random OT correlation to obtain (r0, r1) and (b, rb), respectively.
Bob sends f = b⊕ c to Alice. Alice computes α0 = m0⊕ rf and α1 = m1⊕ r1−f and sends (α0, α1)
to Bob. Bob computes z = αc ⊕ rb.

Note that z = mc and this is a two-message protocol.

Intuition. Think of two (one-time pad) encryptions generated using two secret keys r0 and r1. Bob
knows exactly one secret key rb and Alice does not know which secret key Bob knows.

1

If b = c, then α0 is the encryption of the bit x0 using the secret key r0, and α1 is the encryption of
the bit x1 using the secret key r1. Bob can recover exactly the bit which was encrypted using the
secret key rb.

If b 6= c, then α0 is the encryption of the bit x0 using the secret key r1, and α1 is the encryption of
the bit x1 using the secret key r0. Bob can recover exactly the bit which was encrypted using the
secret key rb.

n-choose-1 Bit OT from 2-choose-1 Bit OT [BCR86]. Suppose the private input of Alice is
(x0, . . . , xn−1) ∈ {0, 1}n and the private input of Bob is i ∈ {0, . . . , n−1}. Here we assume, without
loss of generality, that n = 2t, i.e. n is a power of two. The protocol presented below also works for
n which is not a power of 2.

Protocol. Consider a binary tree of depth k. The root of the binary tree is named ε. Any internal
node v has v0 and v1 as the left and right child of the node v. The leaves of the binary tree are,
respectively, the nodes corresponding to the binary representations of {0, . . . , 2t − 1}.

Corresponding to every edge e = (v, vb), where v is an internal node and b ∈ {0, 1}, Alice picks a
uniform random bit re

$←{0, 1}.

For every internal node node v, Alice and Bob perform a 2-choose-1 bit OT where Alice uses input
(r(v,v0), r(v,v1)). Bob’s input is determined as follows: If v is an ancestor of the leaf i, then Bob’s
input is c, such that the edge (v, vc) lies on the path from the root to the leaf i; otherwise, c $←{0, 1}.
Using this OT, Bob obtains r(v,vc).

For every j ∈ {0, . . . , n − 1}, define R(j) = ⊕ts=1 r(vs−1,vs), where v0v1 . . . vt is the path from the
root to the leaf j. Alice sends αj = xj ⊕R(j), for all j ∈ {0, . . . , 2t − 1}, to Bob.

Bob computes z = αi +R(i). Note that z = xi. We shall argue that Bob does not learn any other
Alice input xj , where i 6= j ∈ {0, . . . , n− 1}. Let a be the first node in the the path from the root
to the leaf j that it differs from the path from the root to the leaf i. Let a′ be the parent of a and
ā be the sibling of a. Note that Bob only got r(a′,ā) and not r(a′,a), so R(j) is perfectly hidden from
Bob. Further, this is only a 2-message protocol.

Intuition. Alice is sends n encryptions with respective secret keys R(0), . . . , R(n− 1). Bob has only
one secret key R(i) and hence is able to decrypt only that encryption.

n-choose-1 `-bit String OT from 2-choose-1 `-bit string OT. This is identical to the pro-
tocol constructing n-choose-1 bit OT from 2-choose-1 bit OT.

2-choose-1 `-bit string OT from 2-choose-1 bit OT. Alice’s private input is (x0,1· · ·x0,`, x1,1· · ·x1,`) ∈
({0, 1}`)2 and Bob’s private input is c ∈ {0, 1}.

Protocol. For every i ∈ [`], Alice and Bob invoke a 2-choose-1 bit OT with inputs (x0,i, x1,i) and c,
respectively. Bob gets xc,i, for all i ∈ [`]. Bob outputs the string xc,1· · ·xc,`.

2

3.1 Overall Summary

Starting from `(n − 1) random OT correlation instances, we can securely compute one n-choose-1
`-bit string OT. Further, all the random OT correlation instances can be computed in an offline
phase. These protocols are only 2-message protocols: Bob sends one message and Alice replies with
one message. And, these protocols are perfectly semi-honest secure even against adversaries with
unbounded computational power.

4 Secure 2-party Computation of Small Functions

Let f : X × Y → {0, 1}`, where |Y | = n. Alice’s private input is x ∈ X and Bob’s private input is
y ∈ Y .

Protocol. Alice constructs strings αj = f(x, i), for all j ∈ {0, . . . , n− 1}. Alice uses (α0, . . . , αn−1)
as input and Bob uses i = y as input to n-choose-1 `-bit string OT. Bob receives z = f(x, y) as
output. Bob sends z to Alice.

Note. Starting from `(n − 1) random OT correlations, this is a 3-message protocol. The first two
rounds are used to implement the n-choose-1 `-bit string OT. And, in the third message, Bob sends
the output z to Alice.

5 Yao’s Garbled Circuit Construction [Yao82]

Assumption. In this presentation, we will assume the existence of a special encryption scheme with
the following properties:

1. Given two keys (k, k′) we can encrypt a message m efficiently and produce the ciphertext
c = Enc(k,k′)(m).

2. Given two keys (t, t′) the decryption algorithm has the following property: if (k, k′) 6= (t, t′)
then Dec(t,t′)(c) =⊥; else Dec(t,t′)(c) = m.

Notation. Suppose Alice and Bob are interested in computing a function f represented by a circuit
C. The input wires corresponding to Alice inputs are {0, . . . , t−1} and the input wires corresponding
to Bob inputs are {k, . . . , 2t− 1}. Let {u+ 1, . . . , u+ `} be the output wires of the circuit. For any
gate G of the circuit, let uG and vG represent the indices of the input wires and wG represent the
index of the output wire. Let W be the set of all input, internal and output wires of the circuit.

Protocol. Alice picks two random keys Kw,0 and Kw,1, for all wires w ∈W . For every gate G of the
circuit, she computes the following strings, for every a, b ∈ {0, 1}:

αa,b = Enc(KuG,a,KvG,b)(KwG,G(a,b))

Alice picks a random permutation πG of four elements and computes the string αG = πG(α0,0, α0,1, α1,0, α1,1).
Alice sends αG to Bob for all gates G. This is called the garbled circuit.

3

For every input wire w ∈ {0, . . . , t − 1}, Alice sends the key Kw,xw to Bob. For every input wire
w ∈ {t, . . . , 2t − 1}, Alice performs a 2-choose-1 string OT with inputs (Kw,0,Kw,1) and Bob uses
c = yw−t as input and obtains the key Kw,yw−t .

For every input wire w ∈ {0, . . . , 2t− 1}, Bob has a key Kw. Bob iteratively performs the following
computation. For any internal gate G, if it has KuG and KvG , it tries to decode all four entries of
αG. Three of them output ⊥ and one outputs KwG . In this manner, Bob computes Kw, for all
w ∈ {u+ 1, . . . , u+ `}. Bob sends {Kw : w ∈ {u+ 1, . . . , u+ `}} to Alice.

Let Kw,θw = Kw, for every w ∈ {u+ 1, . . . , u+ `}. Alice sends {θw : w ∈ {u+ 1, . . . , u+ `}} to Bob.

Alice and Bob output θu+1· · · θu+` as the output of the circuit.

Note. If all the random OT correlation instances are generated in the offline phase, then this is a
4-message protocol (starting with Bob). The first two messages are used to perform key transfers.
The garbled circuit can be send by Alice in the second message. The last two messages are used by
Alice and Bob to obtain the output.

6 GMW Construction [GMW87]

We use the same circuit notation as in Section 5.

Protocol. For all wires w ∈ {0, . . . , t−1}, Alice picks random rw
$←{0, 1} and computes sw = xw⊕rw.

Alice sends sw to Bob.

For all wires w ∈ {t, . . . , 2t− 1}, Bob picks random sw
$←{0, 1} and computes rw = yw−t⊕ sw. Bob

sends rw to Alice.

The following step is performed iteratively. Let G be an internal gate such that Alice already has
(ruG , rvG), and Bob already has (suG , svG). Define the following function fG:

fG(ruG , rvG , rwG , suG , svG) := rwG ⊕G((ruG ⊕ suG) , (rvG ⊕ svG))

Alice uses (ruG , rvG , rwG

$←{0, 1}) as input and Bob uses (suG , svG) as input to this function. Parties
use the protocol in Section 4 to perform this computation where only Bob obtains the output
z = fG(ruG , rvG , rwG , suG , svG). Bob defines swG = z.

For all output wires w ∈ {u+ 1, . . . , u+ `}, Alice sends rw to Bob and Bob sends sw to Alice. Both
parties can compute θw = rw ⊕ sw. Both parties output θu+1· · · θu+` as the output of the circuit.

Note. The round complexity of the protocol depends on the depth of the circuit. The communication
complexity of the protocol depends on the size of the circuit. This protocol is a perfectly secure
protocol if random OT correlations are provided.

Further optimizations are possible. If the circuit only uses XOR, NOT, AND gates, then fG needs
random OT correlations to be evaluated only when G is an AND gate. If G is NOT or XOR gates
then fG can be computed securely without using random OT correlations.

4

7 Security Proofs

Students are encouraged to prove the security of the protocols on their own. The instructor will
help the students develop these proofs in one-on-one meetings.

5

References

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information theoretic reduc-
tions among disclosure problems. In 27th Annual Symposium on Foundations of Com-
puter Science, pages 168–173, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City„ New
York, USA, May 25–27, 1987. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illi-
nois, November 3–5, 1982. IEEE Computer Society Press.

6

	Overview
	Interesting Functionalities
	Interesting Protocols
	Overall Summary

	Secure 2-party Computation of Small Functions
	Yao's Garbled Circuit Construction FOCS:Yao82b
	GMW Construction STOC:GolMicWig87
	Security Proofs

